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Berry's phase and Hannay's angle from quantum canonical 
transformations 

M Maamachet, J-P Provost and G Vallee 
Laboratoim de Physique ThCorique, URA 767 du CNRS, UniversitC de Nice, Pare 
Valrose, 06034 Nice Cedex, France 

Received 2 August 1990 

Abstract. Using an 'action-angle' coherent states formalism, introduced hy the 
authors in a preceding paper, it is shown that Berry's phase and Hannay's angle can 
both be derived from the same quanlum unitary transformation; their relationship 
is easily established in this framework. 

1. Introduction 

In this paper we report on a result which directly issues from the action-angle coherent 
states formalism (AACSF) introduced in a preceding paper [l] devoted to the problem 
of the relationship between the quantum Berry's phase [2] and thc classical Hannay's 
angle [ 3 j ~  This relationship was first studied by Berry using semi-classical approxi- 
mations (Maslov method) [4]. The main interest of the AACSF is that it clarifies the 
similarity between this quantum phase and classical angle, because the latter may 
find a quantum interpretation in terms of coherent states. In particular, in exactly 
the same way as for Berry's phase, the AACSF allows Hannay's angle to he deduced 
from the minimization of a distance in the (quantum) Hilbert space, this minimization 
leading to a geometrical transport equation for classical tori 111. 

It is interesting to complete the study of the similarity between Berry's phase and 
Hannay's angle by considering their relationship from the point of view of quantum 
canonical transformations. This approach is quite natural in the classical case, where 
the connection of Hannay's angle with the generating functional of a time-dependent 
canonical transformation to action-angle variables is well known [4]. In the quan- 
tum context, unitary transformations have also been evoked hut essentially to discuss 
their influence on the decompositioii of the total phase into a dynamical part and  a 
geometrical one (Berry's phase) [5,6]. 

Using the AACSF, we show in this paper that  Berry's phase and Hannay's angle 
can both be derived from the same quantum unitary transformation. In the classical 
limit this transformation becomes the expected canonical transformation to action- 
angle variables. Berry's phase and Hannay's angle are obtained by taking the mean 
values of the operator relationship between the initial and transformed Hamiltonians 
respectively, in  the energy eigenstates and in the 'action-angle' coherent states. 

t O n  leave from the lnstitut d'optique et Mecanique de  PrGcision, UnivesilC de Setif, Setif 19000, 
Algeria. 
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2. Action-angle coherent states 

Let H s ( X )  he the parameter-dependent Hamiltonian of a (one degree of freedom) 
quantum system, in the Schrodinger representation. Its spectrum { E , ( X ) ]  is sup- 
posed to he discrete ( n  = 0,1,. . . , CO) and non-degenerate in the range of variation of 
the parameters X considered in the following. For each value of X we make a definite 
choice (continuous with respect to X) of the eigenstates { l n , X ) ] .  

In [l] the coherent states associated with the Hamiltonian H s ( X )  are defined by : 

Their main interest is that, in the classical limit (i i  - 0,lal - CO, lal'ii finite), the 
complex number (I reads hK112Z112exp(-iO) in terms of the action Z (characterizing 
a trajectory of the Hamiltonian H s ( X )  in phase space) and of the angle 0 (specifying 
a point on that trajectory). These states generalize the usual coherent states 1.) 
associated with the Hamiltonian of the harmonic oscillator. It is important for the 
following, to notice that a change of Hamiltonian induces a change of coordinates in 
the classical phase space: a given point can he associated with the ray la , ,X , )  as 
well as the ray la2, X 2 ) ,  according to the choice of Hamiltonians H s ( X , )  or H s ( X 2 ) .  
Coherent states corresponding to the same point in phase space will be said to be 
classically equivalent: lal, X I )  - la2, X 2 ) .  The canonical transformations which 
we shall consider next are special cases of such changes of action-angle coordinates 

Another property that the states l a , X )  share with the states la) concerns the 
relationship between quantum and classical ohservables [7]. In particular, the mean 
value ( a , X l O l o , X )  and the quantity (a ,Xl[O, ,O,] la ,X) ,  relative to quantum ob- 
servahles O,O,, 02,. . . , respectively become the classical observable o(Z,O, X )  and the 
Poisson bracket {01,02)pB in the classical limit. The only difference from the usual 
situation is that the classical observables now appear naturally as functions of the 
action-angle variables associated with the Hamiltonian H s ( X )  instead of the coordi- 
nates p and q. Mean values of a quantum observable in classically equivalent coherent 
states, are equal but lead to expressions of the corresponding classical observable, in 
terms of different action-angle coordinates. 

(II(ZUQ1) - a2(1*102). 

3. Quantum canonical transforniation 

We now consider the situation where the parameters X vary slowly with time (adi- 
abatic hypothesis). The quantum adiabatic theorem says that the evolved state 
U(t)ln,X(O)) of an initial eigenstate In,X(O)) of the Hamiltonian at time zero is 
an eigenstate exp(ip,(t))ln,X(t)) of the Hamiltonian at  time t .  Let V(t) be the 
unitary operator so that: 

V(t) l%X(O))  = I%X( t ) ) .  (2) 

Then, as already noted [6 ,8] ,  adiabaticity implies that the operator V f ( t ) U ( t )  = U ' ( t )  
is diagond i n  the basis {ln,X(O))]  with eigenvalues expip,(t). 
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The interest in a canonical transformation is the simplification of the equations 
of motion; we define i t  so that the Schrodinger evolution operator U ( t )  is replaced 
by U ' ( t ) .  I n  the Heisenberg picture, where the states are considered as fixed, this 
transformation results in a change from the 'old' Heisenberg observables O,(t) = 
U+(t)OsU(t)  to  the transformed ones: 

OL(1) = ci'+(t)O,U'(t) (U'@) = V ( t ) U ( t ) ) .  (3) 

Let us remark that the change O,(t) - OL(t) preserves the commutation relations 
between observables. 

In the classical limit, this unitary transformation corresponds to a change of coor- 
dinates for the representative point Mi i n  the phase space of the state of the system a t  
time t :  its action-angle coordinates ao(t) associated with the Hamiltonian H,(X(O)) 
are trznsfornxd into those a( t )  m-sociated with the Uazi!tnxiax E i s ( X ( t ) ) .  This 
can be shown in the following way. Let U(t)la,(O),X(O)) be the evolved state of an 
initial coherent state Ia,(O), X(0)) ;  this state is classically equivalent to the states 
lao(t), X ( 0 ) )  and Ia ( t ) ,X( t ) )  associated respectively with H,(X(O)) and H s ( X ( t ) )  
which also represents the point M t .  Then, introducing the 'annihilation operator' A,  
a t  timezero, defined by A,la,,X(O)) = a o l a o , X ( 0 ) )  for any a,, one finds that 

(aa(o), x(o)I~s(t)Iao(o), ~ ( 0 ) )  = (ao(t)) x(o) I~sIoo( t ) ,  x(o)) '= ao(t) 

while 

(.O(O)> x(o)lAh(t)l.o(o),x(o)) = (a( t ) ,  x(1) l~+( t )Asv( t ) la ( t ) ,x ( t ) )  = .(t) 
T.. ,L- -,"--:--, ,:-:A ^ , I  ^L L,^^ -.- P ..--. :._. .,. 1 I... I "+\  .-, / I  .... 
111 U l C  LI-DILLI 1111Ub, a,, V " S C I V d " l ~ ~  dlt: I"IICLII0LIS "L AS (all" A S ,  urlly all" LillUJ 

the quantum unitary transformation O,(t) -+ OL(t)  amounts t o  the time-dependent 
classical canonical transformation from the action-angle variables ao(t) to  a(t) .  

4. Berry's phase and Hannay's angle 

As is well known, a canonical transformatioil leads to a transformed Hamiltonian I<(t) 
which governs the time evolution of the new observables: 8H(t) = ifi-'[I<(t),Oh(t)]. 
A short calculation shows that I < ( t )  = ihU'+(t)C?(t) may also be written: 

I<(t)  = U + ( ~ ) H , ( X ( ~ ) ) U ( ~ )  - ifio+(t)V(t)V+(t)(i(t).  (4) 

In this decomposition of I<(t)  the second term which is only present when the trans- 
formation (i.e. V )  is time-dependent, is a t  the origin of Berry's phase and Hannay's 
angle. 

Let us first show that one can obtain the Berry's phase by taking the mean value of 
both sides of the relationship (4)  into the states In,X(O)). From.(l) and the property 
that U ' ( t )  is diagonal in the basis {In, X(0)) )  one immediately gets: 

+ , ( 1 )  = -h- 'E"(X( t ) )+ i  n , X ( t )  - n , X ( t )  . ( 5 )  ( K I  ) 
When integrated in time, this relationship shows the decomposition of the total phase 
9" into a dynamical part and an extra one, Berry's phase y,". 
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In order to derive the classical counterpart of (4) it is natural now to take its 
mean value into a coherent state Iao(0), X ( 0 ) ) .  From ( 2 )  and the classical equivalence 
cl(t)lao(0),X(O)) - I a ( t ) , X ( t ) )  one obtains: 

Taking into account the remarks of sections 2 and 3 on the classical limit of observ- 
ables, one realizes that h(I ,B ,  X ( t ) )  and k ( I , O ,  X ( t ) )  are respectively the original and 
transformed classical Hamiltonians expressed in terms of the action-angle . variables 
at time t .  Since we have proved that the transformation (3) describes a change of 
action-angle coordinates from ao(t)  to a( t ) ,  the second term in the right-hand side 
of (6) must he the partial time derivative of the generating functional of this trans- 
formation. (This is shown in detail in the appendix.) The angular velocity b on the 
trajectories is obtained through the relationship b = (a /aI)k(I ,O,X( t ) ) .  Thus i t  also 
appears as the sum of a dynamical part ( t l / t l l ) h ( I , O ,  X ( t ) )  and an extra one whose 
time integration leads to the Hannay’s angle QY [4]. 

Finally, let us show that, in the cla3sical limil, the relationship between Berry’s 
phase and Hannay’s angle can be easily established in the present framework. The 
starting point rests on the remark that the average ( 2 ~ ) - ’  J:r(a,X101a,X)d6 of a 
coherent state expectation value of an observable 0 over the argument 6 of a, i.e. over 
a trajectory is, in this limit, equal to the expectation value (n ,XlOln,X)  into the 
energy eigenstate such that tal2 = n [I]. Then, up to the factor h-’, (5) is nothing 
but the average of (6) over a trajectory. Due to the adiabatic hypothesis, Hannay’s 
velocity b Y ( t )  is slowly varying and can also be obtained from the averaged version of 
(6) over a trajectory. Therefore one recovers the standard relation OF = -h(a/aI)y:. 

k(I ,O,X( t ) )  = MI,@, X ( t ) )  - ih(a(t),X(t)lVxla(t),X(t))X. (6) 

Appendix 

The usual expression [4] of the second term in the right-hand side of (6) can be ex- 
plicitly derived if, taking into account classical equivalence, we write the state [ a , X )  
under the form exp(ih-’V(a,,(a,X),X))la,(a,X),X(O)). Then the term under con- 
sideration reads: 

( V y Q  _ _  - ih(a,(a,X), x(O)lV,la,(a,x),x(o)))x. 
Since the states Ia,,X(O)) are related to the coherent states la,) of the harmonic 
oscillator by a unitary transformation (the one which brings the states In,X(O)) onto 
the states In)) one can use the relation [7]: (aolao + da,) = 1 + ih-’q dp to obtain 
the final form: (VxS - pV,q)X. In this last expression the coordinates q , p  and 
S = V - q p  are functions of the ‘running’ coordinates a ( I , 6 )  and of the parameters 
~~ X and ~~~~ t,he ~~~~ prt ia!  derivatives with respec.t to _X are t,akrn for fixed J and 8. 
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